If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-23=-3n^2
We move all terms to the left:
4n^2-23-(-3n^2)=0
We get rid of parentheses
4n^2+3n^2-23=0
We add all the numbers together, and all the variables
7n^2-23=0
a = 7; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·7·(-23)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{161}}{2*7}=\frac{0-2\sqrt{161}}{14} =-\frac{2\sqrt{161}}{14} =-\frac{\sqrt{161}}{7} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{161}}{2*7}=\frac{0+2\sqrt{161}}{14} =\frac{2\sqrt{161}}{14} =\frac{\sqrt{161}}{7} $
| 2(5n+6)=16 | | 2−8−3x =11 | | 12x-21=63 | | (x+5)2-6/2=8 | | v+2,300=-500 | | 5x-39=7(x-5)-2x | | 23=-7y+2(y-6) | | (x+8)=(6x+58) | | 45°+5=x | | x/25=4.4 | | d−7=6 | | 1.2=3(q+9.9)-8.1 | | 6=4(x+6)-7x | | 3c-5=-48-40c | | |x+2|+3=3 | | 8(v-1)=3v+22 | | -9=6u+3(u-2) | | 16=-12-4(5+2x) | | 286=-8n-5(7n+3) | | –3(q−7)=–6 | | 5(x+5)=5x+10 | | 9(3x+6)=18x+3 | | (x)=x^2+3x=8 | | 9/u=12/16 | | 2p+2=3p+9 | | 19=-7w+4(w+7) | | 6x+10=9x+5 | | -23=13w+2w+22 | | 18=4x+40 | | 12k-8=- | | -18+9b=0 | | 85=72+x/3 |